Skip to content

Installation

numta can be installed using pip with various optional dependencies.

Basic Installation

pip install numta

This installs the core library with NumPy support only.

Optional Dependencies

Numba Acceleration

For 5-10x performance speedup using Numba JIT compilation:

pip install "numta[numba]"

Pandas Integration

To use the .ta DataFrame accessor:

pip install "numta[pandas]"

Full Installation

For all features including visualization:

pip install "numta[full]"

From Source

To install the development version:

git clone https://github.com/deepentropy/numta.git
cd numta
pip install -e .

For development with test dependencies:

pip install -e ".[dev]"

Requirements

  • Python >= 3.8
  • NumPy >= 1.20.0

Optional Requirements

Feature Package Installation
Performance numba >= 0.56.0 pip install "numta[numba]"
Pandas pandas >= 1.3.0 pip install "numta[pandas]"
Visualization lwcharts >= 0.1.0 pip install "numta[viz]"
All features - pip install "numta[full]"

Verifying Installation

import numta

# Check version
print(numta.__version__)

# Quick test
import numpy as np
close = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
sma = numta.SMA(close, timeperiod=3)
print(sma)  # [nan, nan, 2., 3., 4.]

Troubleshooting

Numba Installation Issues

If you encounter issues with Numba:

  1. Ensure you have a compatible Python version (3.8-3.12)
  2. Try installing LLVM libraries first:
    # Ubuntu/Debian
    sudo apt-get install llvm
    
    # macOS
    brew install llvm
    

Missing Indicators

If an indicator is not found, ensure you've imported it correctly:

# Import specific indicators
from numta import SMA, EMA, RSI

# Or import all
import numta
sma = numta.SMA(close, timeperiod=20)