Installation¶
numta can be installed using pip with various optional dependencies.
Basic Installation¶
This installs the core library with NumPy support only.
Optional Dependencies¶
Numba Acceleration¶
For 5-10x performance speedup using Numba JIT compilation:
Pandas Integration¶
To use the .ta DataFrame accessor:
Full Installation¶
For all features including visualization:
From Source¶
To install the development version:
For development with test dependencies:
Requirements¶
- Python >= 3.8
- NumPy >= 1.20.0
Optional Requirements¶
| Feature | Package | Installation |
|---|---|---|
| Performance | numba >= 0.56.0 | pip install "numta[numba]" |
| Pandas | pandas >= 1.3.0 | pip install "numta[pandas]" |
| Visualization | lwcharts >= 0.1.0 | pip install "numta[viz]" |
| All features | - | pip install "numta[full]" |
Verifying Installation¶
import numta
# Check version
print(numta.__version__)
# Quick test
import numpy as np
close = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
sma = numta.SMA(close, timeperiod=3)
print(sma) # [nan, nan, 2., 3., 4.]
Troubleshooting¶
Numba Installation Issues¶
If you encounter issues with Numba:
- Ensure you have a compatible Python version (3.8-3.12)
- Try installing LLVM libraries first:
Missing Indicators¶
If an indicator is not found, ensure you've imported it correctly: