Quick Start Guide¶
Get up and running with tvscreener in 5 minutes.
Installation¶
Basic Usage¶
import tvscreener as tvs
# Create a screener and get data
ss = tvs.StockScreener()
df = ss.get() # Returns pandas DataFrame with 150 stocks
Filtering Stocks¶
Use Python comparison operators directly on fields:
from tvscreener import StockScreener, StockField
ss = StockScreener()
# Filter by price, volume, and market cap
ss.where(StockField.PRICE > 10)
ss.where(StockField.VOLUME >= 1_000_000)
ss.where(StockField.MARKET_CAPITALIZATION.between(1e9, 50e9))
df = ss.get()
Selecting Fields¶
Choose which data columns to retrieve:
ss = StockScreener()
ss.select(
StockField.NAME,
StockField.PRICE,
StockField.CHANGE_PERCENT,
StockField.VOLUME,
StockField.PE_RATIO_TTM
)
df = ss.get()
Or get all ~3,500 available fields:
Index Constituents¶
Filter to stocks in major indices:
from tvscreener import StockScreener, IndexSymbol
ss = StockScreener()
ss.set_index(IndexSymbol.SP500)
ss.set_range(0, 500)
df = ss.get() # S&P 500 stocks only
Specific Symbols¶
Query specific tickers:
ss = StockScreener()
ss.symbols = {
"query": {"types": []},
"tickers": ["NASDAQ:AAPL", "NASDAQ:MSFT", "NYSE:JPM"]
}
df = ss.get()
Other Screeners¶
import tvscreener as tvs
# Forex
fs = tvs.ForexScreener()
df = fs.get()
# Crypto
cs = tvs.CryptoScreener()
df = cs.get()
# Bonds
bs = tvs.BondScreener()
df = bs.get()
# Futures
futs = tvs.FuturesScreener()
df = futs.get()
Next Steps¶
- Filtering Guide - Complete filtering reference
- Stock Screening Examples - Value, momentum, dividend strategies
- Technical Analysis Examples - RSI, MACD, multi-timeframe
- API Reference - All available fields